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ABSTARCT: 
 
Cloud computing is a promising approach to execute 
large programs, As this class of programs may be 
decomposed into multiple sequence of tasks that can be 
executed on multiple virtual Machines, the execution of 
the tasks can be viewed as a Directed Acyclic graph 
(DAG). In DAG, nodes are the tasks and edges are the 
precedence constraints between tasks. Users of cloud 
pay for what their programs actually consume 
according to the pricing models of the cloud providers. 
Earlier task scheduling algorithms are mainly focused 
on minimizing the makespan, but not the mechanisms 
to reduce the monetary cost incurred in the settings of 
cloud. The proposed scheduling algorithm mainly 
focuses on Cost-efficiency and it uses two heuristic 
methods. The First method dynamically maps task to 
the most cost-efficient VMs based on the concept of 
Pareto dominance. The second method, a complement 
to the first method, reduces the monetary costs of non-
critical tasks.The simulation results show that our 
algorithm can substantially reduce monetary cost while 
producing makespan as good as the best known task-
scheduling algorithm can provide. 

 
Keywords—minimizing makespan,reducing 

monetary cost, virtual machine, Task scheduling. 
 

I. INTRODUCTION  
Cloud computing is Internet connected mode of 

supercomputing. It is a type of shared infrastructure,  
 
 

whichsimply puts the huge system pools together by 
using various means: distributed, virtualization etc. It  
gives users a variety of storage, networking and 
computing resources in the cloud computing 
environment via Internet, users put a lot of information 
and accesses a lot of computing power with the help of 
its own computer. The goal of cloud computing is to 
manage computing power, storage, various kind of 
platforms and services which is assigned to the external 
users on demand through the internet. 

 
 The scheduling of tasks in cloud means choosing the 
best suitable resource available for execution of tasks or 
to allocate computer machines to tasks in such a 
manner that the completion time is minimized as 
possible. In scheduling algorithms list of tasks is 
created by giving priority to each and every tasks where 
setting of priority to different taskscan be based on 
various parameters. Tasks are then chooses according to 
their priorities and assigned to available processorsand 
computer machines which satisfy a objective 
function.Task scheduling problem can be viewed as 
weighted directed acyclic graph (DAG). It is a directed 
graph with no directed cycles, formed by a collection of 
vertices and directed edges, each edge connecting one 
vertex to another. The vertex represents a task and its 
weight represents the size of task computation. Arc 
represents the communication among the two tasks and 
weight represents the communication cost. The directed 
edge shows the dependency between the two tasks. The 
main goal of the task scheduling is to schedule the tasks 
on processors to minimize make-span. Make-span is 
defined as the completion time of the last task relative 
to the start time of the first task. 
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II. RELATED WORK 
 M.Wieczorek et al.,[15],examined three scheduling 
algorithms to evaluate their performance for scheduling 
scientific workflows in the cloud environment. The 
scheduling algorithms comprise a genetic algorithm 
similar to one presented in the well-known HEFT 
algorithm and a “myopic” algorithm. That the HEFT 
algorithm is more effective and less time consuming 
than the genetic algorithms. HEFT also performs 
substantially better than a simple myopic algorithm. 
HEFT algorithm appears to perform best for 
unbalanced workflows. 

 
 R.Buyya et al.,[2], presented a cost-based workflow 
scheduling algorithm for time-critical workflow 
applications. The processing time and execution cost 
are two typical QoS constraints for executing 
workflows on “pay-per-use” services. The users 
normally would like to get the execution done at lowest 
possible cost within their required timeframe.  That 
allows the workflow management system to minimize 
the execution cost while delivering results within a 
certain deadline. A Markov Decision Process approach 
to schedule sequential workflow task execution, such 
that it can find the optimal path among services to 
execute tasks and transfer input/output data. 

 
 K.Kurowski et al., [10]focused on two different 
models of Grid resource management problems: one of 
the problem is grid scheduling problems with no time 
characteristics available, and the other is scheduling of 
jobs in presence of time characteristics achieved by 
using some prediction techniques, and resource 
reservation mechanisms. That is modeled as multi-
criteria decision support problems. Multi-criteria 
methods may increase a total satisfaction of 
stakeholders taking part in Grid resource management. 
 
 R.Buyya et al.,[2]focused on interconnecting clouds 
for dynamically creating an environment which 
identifies various computing paradigms  promising to 
deliver the vision of computing utilities , provides the 
architecture for creating market-oriented Clouds by 
leveraging  technologies such as VMs, provides 
thoughts on  market-based resource management 
strategies that  encompass both customer-driven service 
management  and computational risk management to 
sustain SLA-oriented resource allocation; presents 

some  representative Cloud platforms especially those  
developed in industries along with the current work  
towards realising market-oriented resource allocation  
of Clouds by leveraging the third generation Aneka 
enterprise Grid technology, reveals the early thoughts  
on interconnecting Clouds for dynamically creating an  
atmospheric computing environment along with  
pointers to future community research and concludes  
with the need for convergence of competing IT  
paradigms. 
 
 Nephele et al.,[12] to integrate frameworks for 
parallel data processing in their product portfolio, 
making it easy for customers to access these services 
and to deploy their programs.  It is the first data 
processing framework to explicitly exploit the dynamic 
resource allocation offered by today's compute clouds 
for both, task scheduling and execution. It allows 
assigning the particular tasks of a processing job to 
different types of virtual machines and takes care of 
their instantiation and termination during the job 
execution. Based on this new framework, we perform 
evaluations on a compute cloud system and compare 
the results to the existing data processing frameworks. 
 
 Pregal et al., [11] focused onmany practical 
computing problems concern large graphs. Standard 
examples include the Web graph and various social 
networks. The scale of these graphs, in some cases 
billions of vertices, trillions of edges poses challenges 
to their efficient processing. In this paper they proposed 
a computational model suitable for this task. Programs 
are expressed as a sequence of iterations, in each of 
which a vertex can receive messages sent in the 
previous iteration, send messages to other vertices, and 
modify its own state and that of its outgoing edges or 
mutate graph topology. This vertex centric approach is 
flexible enough to express a broad set of algorithms. 
The model has been designed for efficient, scalable and 
fault-tolerant implementation on clusters of thousands 
of commodity computers, and its implied synchronicity 
makes reasoning about programs easier. Distribution 
related details are hidden behind an abstract API. The 
result is a framework for processing large graphs that is 
expressive and easy to program. 
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III. METHODOLOGY 
A. APPLICATION MODEL 
 Let G=(V,E) be a DAG, where V is the set of v tasks 
to be executedand E is the set of e edges representing 
the precedence constraints between tasks.Assume that 
G has a task without any predecessors, call it an entry 
task and denote it by ventry.The weight of a node 
vi,denoted by dtvi, represents the computation load for 
task vi. Cloud computing environment consists of a set 
of m fully connected heterogeneous VMs, denoted by 
M.Let camj denote the CPU cycles allocated to VM mj. 
Each task can be executed on a different VM, and it is 
denoted by t(vi,mj)and the execution time of the task vi 
on VM mj is given as, 
 
  

 
 

Figure 1. Task Graph 
 

 

𝑡�𝑣𝑖 ,𝑚𝑗� =
𝑑𝑡𝑣𝑖
𝑐𝑎𝑚𝑗

[1] 

The average execution time of the task vi is given in 
Equation 2 as, 

𝑇𝑉𝚤���� = �
𝑡�𝑣𝑖,,𝑚𝑗�

𝑚
 [2]

𝑚

𝑗=1

 

The weight of edge (vi, vk), denoted by ctvi,vkrepresents 
the communication time between  task viand task vk.. 
 

Table 3.1 Execution time and priority of tasks 
 

TASK VM1 VM2 VM3 PRIORITY 
0 9.26 11.01 13.79 51.95 
1 9.2 10.5 13.9 38.47 
2 10.05 12.12 13.15 38.66 
3 9.54 10.41 15.4 24.81 
4 10.33 11.51 14.08 25.23 
5 9.36 11.1 14.03 24.93 
6 9.39 10.73 13.88 11.33 

 
Thepriority of the task vi is computed by traversing the 
DAG upward,starting from the exit task, and is defined 
in Equation 3. 

𝑃𝑣𝑖 = 𝑇�𝑣𝑖 + max
𝑣𝑘€𝑠𝑢𝑐𝑐(𝑣𝑖)

�𝑐𝑡𝑣𝑖,𝑣𝑘 + 𝑃𝑣𝑘�        [3]     

 
 Where succ (vi)is the set of successors of task vi. The 
value of PVk is the priority of immediate successors of 
task vi..The priority is computed by traversing the task 
graph upward, the priority of exit task is defined in 
Equation 4, 

𝑃𝑣𝑒𝑥𝑖𝑡 = 𝑇�𝑣𝑒𝑥𝑖𝑡[4] 
 

B. CLOUD RESOURCES MODEL 
 
 Cloud providers offer different types of VMs for 
different types of workload. These VMs have different 
processing capacities and pricing models.In particular, 
we use a linear pricing model and an exponential 
pricing model. In the linear pricing model, the cost of 
using VM is linearly correlated with the number of 
CPU cycles.  The total monetary cost is computed by 

𝑐 = � 𝑐�𝑣𝑖 ,𝑚𝑗�               [5]
𝑗€𝑠𝑒𝑙𝑒𝑐𝑡

 

 

IV. PROPOSED WORK 
 Cost efficient task scheduling algorithm consists of 
two scheduling heuristics.The First heuristic uses the 
concept of Pareto dominance to generate a cost efficient 
task schedule based on the execution time of the tasks 
and the monetary charges of VMs. The second heuristic 
complements to the first heuristic and attempts to 
minimize the monetary costs of non-critical tasks. 

 
 The following minimization problem with an 
objective function for each node viϵ V as a convex 
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combination of running time and monetary cost: 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:𝛼 ∗ 𝑇(𝑖, 𝑗) + (1− 𝛼)

∗ 𝑐(𝑖, 𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑗𝜖𝑀    [6] 
 

Subject to:𝑇(𝑖, 𝑗) =
𝑡�𝑣𝑗,𝑚𝑗�−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
[7] 

 

𝑐(𝑖. 𝑗) =
𝑐�𝑣𝑖 ,𝑚𝑗� − 𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
[8] 

 
𝛼 ∈ [0,1]     [9] 

 
Where  
 α -cost efficient factor that represents the 
userpreference for the execution time and monetary 
cost. 
 
 t(i,j) and c(i,j)- represents cost-efficiency ratios of 
time and costs. 
 
 tmin(max)- represents the minimum maximum execution 
time   
 
 cmin(max)-represents the  minimum maximum monetary 
cost. 
 

4.1 PARETO OPTIMALSCHEDULING 
HEURISTIC(POSH) 
 

POSH is a heuristic approachto dispatch tasks in a 
DAG to the cost-conscious VMs based on Pareto 
dominance. 
 

POSH involves the following three phases: 
 
 (1)Weighting Phase: In this phase, 
weights are assigned to the nodes and edges in the 
workflow. The weights assigned to nodes are calculated 
based on the predicted execution time of tasks and the 
weights assigned to edges are calculated based on 
predicted time of data transferred between the VMs. 
 
 (2)Prioritizing Phase: In this phase,a 
sorted list of tasks is created in the order how they 
should be executed. The priority of each task is to be set 
with the upward priority value, which is equal to the 

weight of the node plus the execution time of the 
successors. The task list is generated by sorting the 
tasks by the descending order of priority. 
 
 (3)Mapping Phase: In this phase, the 
tasks are assigned to the resources based on Pareto 
dominance. Consecutive tasks are mapped to the 
resources based on the priority queue. For each task, 
choose the VM that favours scheduling tasks with low 
monetary cost to run it. This is done by the pre-defined 
objective function. 
 
SLACK TIME SCHEDULING HEURISTIC (STSH) 
 
 To reschedule non-critical tasks for 
reducing monetary costs, compute the slack time for the 
non-critical tasks. The slack time for a non-critical task 
Ti can be calculated by 
 
𝑇𝑠𝑙𝑎𝑐𝑘(𝑣𝑖) = min

𝑣𝑗∈𝑝𝑟𝑒𝑑(𝑣𝑖)
�𝐿𝐹𝑇�𝑣𝑗�� − 𝐸𝑆𝑇(𝑣𝑖)     [10] 

 
 STSH calculates the slack time for each 
non-critical task and then reschedules it to the idle VM 
with the minimum monetary cost. 
 

V. RESULTS AND DISCUSSION 
 

The performance of Hybrid algorithm and the proposed 
HEFT algorithm with respect to the makespan and 
monetary cost are evaluated using cloudsim. Results 
obtained with the use of the same machine 
configurations. 
 

 
Figure. 2 Monetary cost Result 
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Figure. 3 Makespan Result 
 

 
 We normalize the makespan and monetary cost and 
call them as Schedule Length ratio (SLR) and monetary 
cost ratio(MCR) as follows: 
 
𝑆𝐿𝑅 = 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑ ∈𝑐𝑝𝑚𝑖𝑛𝑚𝑗∈𝑀
{𝑡(𝑖,𝑗)}

𝑣𝑖

[11] 

 
MCR = 𝐶

∑𝑣𝑖
∈𝑐𝑝 𝑚𝑖𝑛

𝑚𝑗∈𝑀{𝐶(𝑖,𝑗)}
 [12] 

 
The input cost-efficient factor 𝛼 to measure the 
makespan and the monetary cost. Fig 2 shows the 
monetary cost result of a random graph with 100 tasks, 
fig 3 shows the makespan result. There is a tradeoff 
between the makespan and monetary cost. 
 

 
Figure. 4 Average SLR 

 
 
When the cost-efficient factor 𝛼 = 0.7, Hybrid incurs 
34.98 percent less monetary cost than HEFT on 
average, with almost the same makespan. This implies 
that Hybrid performs well in a cloud setting. 

 
 

Figure. 5 Average MCR 
 
When 𝛼 = 0.5, Hybrid incurs 38.25 percent less 
monetary cost than HEFT on average, with about 13.18 
percent makespan extension. 
When 𝛼 = 0.3, Hybrid incurs 41.26 percent less 
monetary cost than HEFT on average, but with 32.65 
percentage more makespan. 
 

VI. CONCLUSION AND FUTURE WORK 
 In cloud computing, task scheduling helps 
to choose the best suitable resources available for 
execution of tasks. Most conventional task scheduling 
algorithms do not consider monetary costs, so they 
cannot be directly applies in a cloud setting. Hence, a 
new task scheduling algorithm is devised for running 
large programs in the cloud. The proposed algorithm 
computes scheduling plans to produce efficient 
makespan and to reduce the monetary cost. 
 As a future work, load balancing can also 
be considered for allocating tasks to VMs and new 
optimization techniques can be used for efficient 
scheduling and penalties can be incorporated for who 
violates the consumer-provider contracts. 
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