
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 208
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

OPTIMIZED SCHEDULING OF TASKS USING HEURISTIC
APPROACH WITH COST-EFFICIENCY IN CLOUD DATA

CENTERS

G.Ramya1, Dr P. Keerthika2, Dr P. Suresh3 and Ms M. Sivaranjani4.
1PG Scholar, Department of CSE, Kongu Engineering College, Perundurai-638052, Erode, Tamil Nadu, India
2Assistant Professor (Sr.G), Department of CSE, Kongu Engineering College, Perundura-638052,Erode, Tamil Nadu
3Assistant Professor (Sr.G), Department of IT, Kongu Engineering College, Perundura-638052, Erode, Tamil Nadu
4 Assistant Proferssor, Department of CSE, Kongu Engineering College, Perundurai-638052, Erode, Tamil Nadu

ABSTARCT:

Cloud computing is a promising approach to execute
large programs, As this class of programs may be
decomposed into multiple sequence of tasks that can be
executed on multiple virtual Machines, the execution of
the tasks can be viewed as a Directed Acyclic graph
(DAG). In DAG, nodes are the tasks and edges are the
precedence constraints between tasks. Users of cloud
pay for what their programs actually consume
according to the pricing models of the cloud providers.
Earlier task scheduling algorithms are mainly focused
on minimizing the makespan, but not the mechanisms
to reduce the monetary cost incurred in the settings of
cloud. The proposed scheduling algorithm mainly
focuses on Cost-efficiency and it uses two heuristic
methods. The First method dynamically maps task to
the most cost-efficient VMs based on the concept of
Pareto dominance. The second method, a complement
to the first method, reduces the monetary costs of non-
critical tasks.The simulation results show that our
algorithm can substantially reduce monetary cost while
producing makespan as good as the best known task-
scheduling algorithm can provide.

Keywords—minimizing makespan,reducing

monetary cost, virtual machine, Task scheduling.

I. INTRODUCTION
Cloud computing is Internet connected mode of

supercomputing. It is a type of shared infrastructure,

whichsimply puts the huge system pools together by
using various means: distributed, virtualization etc. It
gives users a variety of storage, networking and
computing resources in the cloud computing
environment via Internet, users put a lot of information
and accesses a lot of computing power with the help of
its own computer. The goal of cloud computing is to
manage computing power, storage, various kind of
platforms and services which is assigned to the external
users on demand through the internet.

 The scheduling of tasks in cloud means choosing the
best suitable resource available for execution of tasks or
to allocate computer machines to tasks in such a
manner that the completion time is minimized as
possible. In scheduling algorithms list of tasks is
created by giving priority to each and every tasks where
setting of priority to different taskscan be based on
various parameters. Tasks are then chooses according to
their priorities and assigned to available processorsand
computer machines which satisfy a objective
function.Task scheduling problem can be viewed as
weighted directed acyclic graph (DAG). It is a directed
graph with no directed cycles, formed by a collection of
vertices and directed edges, each edge connecting one
vertex to another. The vertex represents a task and its
weight represents the size of task computation. Arc
represents the communication among the two tasks and
weight represents the communication cost. The directed
edge shows the dependency between the two tasks. The
main goal of the task scheduling is to schedule the tasks
on processors to minimize make-span. Make-span is
defined as the completion time of the last task relative
to the start time of the first task.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 209
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

II. RELATED WORK
 M.Wieczorek et al.,[15],examined three scheduling
algorithms to evaluate their performance for scheduling
scientific workflows in the cloud environment. The
scheduling algorithms comprise a genetic algorithm
similar to one presented in the well-known HEFT
algorithm and a “myopic” algorithm. That the HEFT
algorithm is more effective and less time consuming
than the genetic algorithms. HEFT also performs
substantially better than a simple myopic algorithm.
HEFT algorithm appears to perform best for
unbalanced workflows.

 R.Buyya et al.,[2], presented a cost-based workflow
scheduling algorithm for time-critical workflow
applications. The processing time and execution cost
are two typical QoS constraints for executing
workflows on “pay-per-use” services. The users
normally would like to get the execution done at lowest
possible cost within their required timeframe. That
allows the workflow management system to minimize
the execution cost while delivering results within a
certain deadline. A Markov Decision Process approach
to schedule sequential workflow task execution, such
that it can find the optimal path among services to
execute tasks and transfer input/output data.

 K.Kurowski et al., [10]focused on two different
models of Grid resource management problems: one of
the problem is grid scheduling problems with no time
characteristics available, and the other is scheduling of
jobs in presence of time characteristics achieved by
using some prediction techniques, and resource
reservation mechanisms. That is modeled as multi-
criteria decision support problems. Multi-criteria
methods may increase a total satisfaction of
stakeholders taking part in Grid resource management.

 R.Buyya et al.,[2]focused on interconnecting clouds
for dynamically creating an environment which
identifies various computing paradigms promising to
deliver the vision of computing utilities , provides the
architecture for creating market-oriented Clouds by
leveraging technologies such as VMs, provides
thoughts on market-based resource management
strategies that encompass both customer-driven service
management and computational risk management to
sustain SLA-oriented resource allocation; presents

some representative Cloud platforms especially those
developed in industries along with the current work
towards realising market-oriented resource allocation
of Clouds by leveraging the third generation Aneka
enterprise Grid technology, reveals the early thoughts
on interconnecting Clouds for dynamically creating an
atmospheric computing environment along with
pointers to future community research and concludes
with the need for convergence of competing IT
paradigms.

 Nephele et al.,[12] to integrate frameworks for
parallel data processing in their product portfolio,
making it easy for customers to access these services
and to deploy their programs. It is the first data
processing framework to explicitly exploit the dynamic
resource allocation offered by today's compute clouds
for both, task scheduling and execution. It allows
assigning the particular tasks of a processing job to
different types of virtual machines and takes care of
their instantiation and termination during the job
execution. Based on this new framework, we perform
evaluations on a compute cloud system and compare
the results to the existing data processing frameworks.

 Pregal et al., [11] focused onmany practical
computing problems concern large graphs. Standard
examples include the Web graph and various social
networks. The scale of these graphs, in some cases
billions of vertices, trillions of edges poses challenges
to their efficient processing. In this paper they proposed
a computational model suitable for this task. Programs
are expressed as a sequence of iterations, in each of
which a vertex can receive messages sent in the
previous iteration, send messages to other vertices, and
modify its own state and that of its outgoing edges or
mutate graph topology. This vertex centric approach is
flexible enough to express a broad set of algorithms.
The model has been designed for efficient, scalable and
fault-tolerant implementation on clusters of thousands
of commodity computers, and its implied synchronicity
makes reasoning about programs easier. Distribution
related details are hidden behind an abstract API. The
result is a framework for processing large graphs that is
expressive and easy to program.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 210
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

III. METHODOLOGY
A. APPLICATION MODEL
 Let G=(V,E) be a DAG, where V is the set of v tasks
to be executedand E is the set of e edges representing
the precedence constraints between tasks.Assume that
G has a task without any predecessors, call it an entry
task and denote it by ventry.The weight of a node
vi,denoted by dtvi, represents the computation load for
task vi. Cloud computing environment consists of a set
of m fully connected heterogeneous VMs, denoted by
M.Let camj denote the CPU cycles allocated to VM mj.
Each task can be executed on a different VM, and it is
denoted by t(vi,mj)and the execution time of the task vi
on VM mj is given as,

Figure 1. Task Graph

𝑡�𝑣𝑖 ,𝑚𝑗� =
𝑑𝑡𝑣𝑖
𝑐𝑎𝑚𝑗

[1]

The average execution time of the task vi is given in
Equation 2 as,

𝑇𝑉𝚤���� = �
𝑡�𝑣𝑖,,𝑚𝑗�

𝑚
 [2]

𝑚

𝑗=1

The weight of edge (vi, vk), denoted by ctvi,vkrepresents
the communication time between task viand task vk..

Table 3.1 Execution time and priority of tasks

TASK VM1 VM2 VM3 PRIORITY
0 9.26 11.01 13.79 51.95
1 9.2 10.5 13.9 38.47
2 10.05 12.12 13.15 38.66
3 9.54 10.41 15.4 24.81
4 10.33 11.51 14.08 25.23
5 9.36 11.1 14.03 24.93
6 9.39 10.73 13.88 11.33

Thepriority of the task vi is computed by traversing the
DAG upward,starting from the exit task, and is defined
in Equation 3.

𝑃𝑣𝑖 = 𝑇�𝑣𝑖 + max
𝑣𝑘€𝑠𝑢𝑐𝑐(𝑣𝑖)

�𝑐𝑡𝑣𝑖,𝑣𝑘 + 𝑃𝑣𝑘� [3]

 Where succ (vi)is the set of successors of task vi. The
value of PVk is the priority of immediate successors of
task vi..The priority is computed by traversing the task
graph upward, the priority of exit task is defined in
Equation 4,

𝑃𝑣𝑒𝑥𝑖𝑡 = 𝑇�𝑣𝑒𝑥𝑖𝑡[4]

B. CLOUD RESOURCES MODEL

 Cloud providers offer different types of VMs for
different types of workload. These VMs have different
processing capacities and pricing models.In particular,
we use a linear pricing model and an exponential
pricing model. In the linear pricing model, the cost of
using VM is linearly correlated with the number of
CPU cycles. The total monetary cost is computed by

𝑐 = � 𝑐�𝑣𝑖 ,𝑚𝑗� [5]
𝑗€𝑠𝑒𝑙𝑒𝑐𝑡

IV. PROPOSED WORK
 Cost efficient task scheduling algorithm consists of
two scheduling heuristics.The First heuristic uses the
concept of Pareto dominance to generate a cost efficient
task schedule based on the execution time of the tasks
and the monetary charges of VMs. The second heuristic
complements to the first heuristic and attempts to
minimize the monetary costs of non-critical tasks.

 The following minimization problem with an
objective function for each node viϵ V as a convex

0

2 1

4 3

6

5

1.97
1.94

1.96
2.04

1.88

1.93

1.70 2.10

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 211
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

combination of running time and monetary cost:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:𝛼 ∗ 𝑇(𝑖, 𝑗) + (1− 𝛼)

∗ 𝑐(𝑖, 𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑗𝜖𝑀 [6]

Subject to:𝑇(𝑖, 𝑗) =
𝑡�𝑣𝑗,𝑚𝑗�−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
[7]

𝑐(𝑖. 𝑗) =
𝑐�𝑣𝑖 ,𝑚𝑗� − 𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
[8]

𝛼 ∈ [0,1] [9]

Where
 α -cost efficient factor that represents the
userpreference for the execution time and monetary
cost.

 t(i,j) and c(i,j)- represents cost-efficiency ratios of
time and costs.

 tmin(max)- represents the minimum maximum execution
time

 cmin(max)-represents the minimum maximum monetary
cost.

4.1 PARETO OPTIMALSCHEDULING
HEURISTIC(POSH)

POSH is a heuristic approachto dispatch tasks in a
DAG to the cost-conscious VMs based on Pareto
dominance.

POSH involves the following three phases:

 (1)Weighting Phase: In this phase,
weights are assigned to the nodes and edges in the
workflow. The weights assigned to nodes are calculated
based on the predicted execution time of tasks and the
weights assigned to edges are calculated based on
predicted time of data transferred between the VMs.

 (2)Prioritizing Phase: In this phase,a
sorted list of tasks is created in the order how they
should be executed. The priority of each task is to be set
with the upward priority value, which is equal to the

weight of the node plus the execution time of the
successors. The task list is generated by sorting the
tasks by the descending order of priority.

 (3)Mapping Phase: In this phase, the
tasks are assigned to the resources based on Pareto
dominance. Consecutive tasks are mapped to the
resources based on the priority queue. For each task,
choose the VM that favours scheduling tasks with low
monetary cost to run it. This is done by the pre-defined
objective function.

SLACK TIME SCHEDULING HEURISTIC (STSH)

 To reschedule non-critical tasks for
reducing monetary costs, compute the slack time for the
non-critical tasks. The slack time for a non-critical task
Ti can be calculated by

𝑇𝑠𝑙𝑎𝑐𝑘(𝑣𝑖) = min

𝑣𝑗∈𝑝𝑟𝑒𝑑(𝑣𝑖)
�𝐿𝐹𝑇�𝑣𝑗�� − 𝐸𝑆𝑇(𝑣𝑖) [10]

 STSH calculates the slack time for each
non-critical task and then reschedules it to the idle VM
with the minimum monetary cost.

V. RESULTS AND DISCUSSION

The performance of Hybrid algorithm and the proposed
HEFT algorithm with respect to the makespan and
monetary cost are evaluated using cloudsim. Results
obtained with the use of the same machine
configurations.

Figure. 2 Monetary cost Result

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 212
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Figure. 3 Makespan Result

 We normalize the makespan and monetary cost and
call them as Schedule Length ratio (SLR) and monetary
cost ratio(MCR) as follows:

𝑆𝐿𝑅 = 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑ ∈𝑐𝑝𝑚𝑖𝑛𝑚𝑗∈𝑀
{𝑡(𝑖,𝑗)}

𝑣𝑖

[11]

MCR = 𝐶

∑𝑣𝑖
∈𝑐𝑝 𝑚𝑖𝑛

𝑚𝑗∈𝑀{𝐶(𝑖,𝑗)}
 [12]

The input cost-efficient factor 𝛼 to measure the
makespan and the monetary cost. Fig 2 shows the
monetary cost result of a random graph with 100 tasks,
fig 3 shows the makespan result. There is a tradeoff
between the makespan and monetary cost.

Figure. 4 Average SLR

When the cost-efficient factor 𝛼 = 0.7, Hybrid incurs
34.98 percent less monetary cost than HEFT on
average, with almost the same makespan. This implies
that Hybrid performs well in a cloud setting.

Figure. 5 Average MCR

When 𝛼 = 0.5, Hybrid incurs 38.25 percent less
monetary cost than HEFT on average, with about 13.18
percent makespan extension.
When 𝛼 = 0.3, Hybrid incurs 41.26 percent less
monetary cost than HEFT on average, but with 32.65
percentage more makespan.

VI. CONCLUSION AND FUTURE WORK
 In cloud computing, task scheduling helps
to choose the best suitable resources available for
execution of tasks. Most conventional task scheduling
algorithms do not consider monetary costs, so they
cannot be directly applies in a cloud setting. Hence, a
new task scheduling algorithm is devised for running
large programs in the cloud. The proposed algorithm
computes scheduling plans to produce efficient
makespan and to reduce the monetary cost.
 As a future work, load balancing can also
be considered for allocating tasks to VMs and new
optimization techniques can be used for efficient
scheduling and penalties can be incorporated for who
violates the consumer-provider contracts.

REFERENCES
[1] Armbrust M, Fox A, Griffith R, Joseph A, Katz R,

Konwinski A, Lee G, Patterson D, Rabkin A,
Stoica I, (2009), Above the clouds: ‘a berkeley
view of cloud computing’, Tech. rep, Technical
Report UCB/EECS, EECS Department, University
of California, Berkeley.

[2] Buyya R, Yeo C, Venugopal S, Broberg J, Brandic
I, (2009),‘Cloud computing and emerging it
platforms: Vision hype and reality for delivering

0

100

200

300

60 80 100

Av
er

ag
e

M
CR

Graph size

Average MCR

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 213
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

computing as the 5th utility’, Future Generation
computer systems 25 (6) 599–616.

[3] Bajaj R, Agrawal D, (2004), ‘Improving scheduling

of tasks in a heterogeneous environment’, IEEE
Transactions on Parallel and Distributed Systems 15
(2) 107-118.

[4] Bozdag D, Ozguner F, Catalyurek U, (2009),

‘Compaction of schedules and a two-stage approach
for duplication-based dag scheduling’, IEEE
Transactions on Parallel and Distributed Systems
20 (6) 857–871.

[5] Braun T, Siegel H, Beck N, Boloni L,
Maheswaran M, Reuther A, Robertson J, Theys M,
Yao B, Hensgen D, (2001), ‘A comparison of
eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems ’, Journal of Parallel and
Distributed computing 61 (6) 810–837.

[6] Hou E, Ansari N, Ren H, (1994),‘ A genetic

algorithm for multiprocessor scheduling’, IEEE
Transactions on Parallel and Distributed Systems 5
(2) 113–120.

[7] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D,

Dryad,(2007): ‘Distributed data-parallel programs
from sequential building blocks’, ACM SIGOPS
Operating Systems Review 41 (3) 59–72.

[8] Kwok Y, Ahmad I, (1996), ‘Dynamic critical-path

scheduling: an effective technique for allocating task
graphs to multiprocessors’, IEEE Transactions on
Parallel and Distributed Systems 7 (5) 506–521.

[9] Kwok Y, Ahma I, (1999) ‘Static scheduling

algorithms for allocating directed task graphs to
multiprocessors’, ACM Computing Surveys
(CSUR) 31 (4)406–471

[10] Kurowski K, Nabrzyski J, Oleksiak A, Weglarz J ,

(2006) , ‘Grid multicriteria job scheduling with
resource reservation andprediction mechanisms,
Perscpectives in Modern Project Scheduling , pp.
345-373.

[11] Li J, Su S, Cheng X, Huang Q, Zhang Z, (2011),

‘ Cost-conscious scheduling for large graph
processing in the cloud’, IEEE 13th International
Conference on High Performance Computing and
Communications (HPCC), pp. 808–813.

[12] Alewicz G, Austern M, Bik A, Dehnert J, Horn I,
Leiser N, zajkowski, Pregel,(2010) : ‘a system for
large-scale graph processing’, in Proceedings of the
International Conference on Management of Data,
ACM, pp.135–146.

[13] Nephele, Austern M, Kao O, (2009),‘ Efficient

parallel data processing in the cloud’, Many –Task
Computing on Grids and Supercomputers,
ACM,p.8.

[14] Topcuoglu H, Hariri S, Wu M, (2002),

‘Performance-effective and low complexity task
scheduling for heterogeneous computing’, IEEE
Transactions on Parallel and Distributed Systems 13
(3) 260–274

[15] Ullman J, (1997), ‘Np-complete scheduling
problems ’, Journal ofComputer and System
Sciences 10 (3) 384–393.

[16] Wieczorek M, Prodan R, Hoheisel A , (2009),

‘Towards a general model of multi-criteria
workflow Scheduling on the grid, Future Generation
Computer Systems 25(3) 237-256.

.

IJSER

http://www.ijser.org/

	I. Introduction
	II. Related work
	III. METHODOLOGY
	A. APPLICATION MODEL
	B. CLOUD RESOURCES MODEL
	IV. PROPOSED WORK
	4.1 PARETO OPTIMALSCHEDULING HEURISTIC(POSH)

